Agricultural hydrology is the study of water balance components intervening in agricultural water management, notably in irrigation and drainage.[1]
Contents |
The water balance components can be grouped into components corresponding to zones in a vertical cross-section in the soil forming reservoirs with inflow, outflow and storage of water [2] :
The general water balance reads:
and it is applicable to each of the reservoirs or a combination thereof.
In the following balances it is assumed that the water table is inside the transition zone.
The incoming water balance components into the surface reservoir (S) are:
The outgoing water balance components from the surface reservoir (S) are:
The surface water balance reads:
Example of a surface water balance |
An example is given of surface runoff according to the Curve number method.[3] The applicable equation is:
where Rm is the maximum retention of the area for which the method is used Normally one finds that Ws = 0.2 Rm and the value of Rm depends on the soil characteristics. The Curve Number method provides tables for these relations. The method yields cumulative runoff values. To obtain runoff intensity values or runoff velocity (volume per unit of time) the cumulative duration is to be divided into sequential time steps (for example in hours). |
The incoming water balance components into the root zone (R) are:
The outgoing water balance components from the surface reservoir (R) are:
The root zone water balance reads:
The incoming water balance components into the transition zone (T) are:
The outgoing water balance components from the transition zone (T) are:
The water balance of the transition zone reads:
The incoming water balance components into the aquifer (Q) are:
The outgoing water balance components from the aquifer (Q) are:
The water balance of the aquifer reads:
where Wq is the change of water storage in the aquifer noticeable as a change of the artesian pressure.
Water balances can be made for a combination of two bordering vertical soil zones discerned, whereby the components constituting the inflow and outflow from one zone to the other will disappear.
In long term water balances (month, season, year), the storage terms are often negligible small. Omitting these leads to steady state or equilibrium water balances.
Combination of surface reservoir (S)and root zone (R) in steady state yields the topsoil water balance :
Combination of root zone (R) and transition zone (T) in steady state yields the subsoil water balance :
Combination of transition zone (T) and aquifer (Q) in steady state yields the geohydrologic water balance :
Combining the uppermost three water balances in steady state gives the agronomic water balance :
Combining all four water balances in steady state gives the overall water balance :
Example of an overall water balance | ||||||||||||
An example is given of the reuse of groundwater for irrigation by pumped wells.
The total irrigation and the infiltration are:
The field irrigation efficiency (Ff < 1) is:
The value of Era is less than Inf , there is an excess of irrigation that percolates down to the subsoil (Per):
The percolation Per is pumped up again by wells for irrigation (Wel), hence:
With this equation the following table can be prepared:
It can be seen that with low irrigation efficiency the amount of water pumped by the wells (Wel) is several time greater than the amount of irrigation water brought in by the canal system (Irr). This is due to the fact that a drop of water must be recirculated on the average several times before is used by the plants. |
When the water table is above the soil surface, the balances containing the components Inf, Per, Cap are not appropriate as they do not exist. When the water table is inside the root zone, the balances containing the components Per, Cap are not appropriate as they do not exist. When the water table is below the transition zone, only the aquifer balance is appropriate.
Under specific conditions it may be that no aquifer, transition zone and/or root zone is present. Water balances can be made omitting the absent zones.
Vertical hydrological components along the boundary between two zones with arrows in the same direction can be combined into net values .
For example : Npc = Per − Cap (net percolation) , Ncp = Cap − Per (net capillary rise).
Horizontal hydrological components in the same zone with arrows in same direction can be combined into excess values .
For example : Egio = Iaq − Oaq (excess groundwater inflow over outflow) , Egoi = Oaq − Iaq (excess groundwater outflow over inflow).
Agricultural water balances are also used in the salt balances of irrigated lands.
Further, the salt and water balances are used in agro-hydro-salinity-drainage models like Saltmod.
Equally, they are used in groundwater salinity models like SahysMod which is a spatial variation of SaltMod using a polygonal network.
The irrigation requirement (Irr) can be calculated from the topsoil water balance, the agronomic water balance and/or the overall water balance, as defined in the section "Combined balances", depending on the availability of data on the water balance components.
Considering surface irrigation, assuming the evaporation of surface water is negligibly small (Eva = 0), setting the actual evapotranspiration Era equal to the potential evapotranspiration (Epo) so that Era = Epo and setting the surface inflow Isu equal to Irr so that Isu = Irr, the balances give respectively:
Defining the irrigation efficiency as IEFF = Epo/Irr, i.e. the fraction of the irrigation water that is consumed by the crop, it is found respectively that :
Likewise the safe yield of wells, extracting water from the aquifer without overexploitation, can be determined using the geohydrologic water balance and/or the overall water balance, as defined in the section "Combined balances", depending on the availability of data on the water balance components.
Similarly, the subsurface drainage requirement can be found from the drain discharge (Dtr) in the subsoil water balance, the agronomic water balance, the geohydrologic water balance and/or the overall water balance.
In the same fashion, the well drainage requirement can be found from well discharge (Wel) in the geohydrologic water balance and/or the overall water balance.
The subsurface drainage requirement and well drainage requirement play an important role in the design of agricultural drainage systems (references:,[4][5] ).
Example of drainage and irrigation requirements | |||||||||||||||||||||||||
The drainage and irrigation requirements in The Netherlands are derived from the climatic characteristics (see figure).
The quantity of water to be drained in a normal winter is:
According to the figure, the drainage period is from November to March (120 days) and the discharge of the drainage system is During winters with more precipitation than normal, the drainage requirement increase accordingly. The irrigation requirement depends on the rooting depth of the crops, which determines their capacity to make use of the water stored in the soil after winter. Having a shallow rooting system, pastures need irrigation to an amount of about half of the storage depletion in summer. Practically, wheat does not require irrigation because it develops deeper roots while during the maturing period a dry soil is favorable. The analysis of cumulative frequency [6] of climatic data plays an important role in the determination of the irrigation and drainage needs in the long run. |
|